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• Precision measurements of galaxy shapes depend on measurements of 
stars since galaxy images are deconvolved with stellar-estimated PSF. 

• Approach assumes stellar PSF is same as galaxy PSF, which is untrue if 
PSF depends on wavelength. 

• Can correct provided: 

• Exact wavelength dependence of PSF 

• SED of each star and galaxy. 

• Can use photometry to estimate corrections using a machine learning 
algorithm trained with a realistic catalog of SEDs and known PSF 
wavelength dependence.

Impact of chromatic seeing on cosmic shear.  Left: relative size of PSF for different 
SEDs at different redshifts.  Requirements for LSST and DES are shown as bands.  

The running mean in red must fall in this band for this single systematic effect to not 
exceed the statistical uncertainty of LSST cosmic shear.  Right: residual relative PSF 

size after employing a machine learning correction using photometry as input.



• How does chromatic seeing change with 
the turbulence outer scale?  How isotropic 
is chromatic seeing? 

• LSST optics will exhibit wavelength-
dependent refraction, diffraction, and 
aberrations.  How large are these effects? 

• Do we need to know PSF wavelength-
dependence a priori?  How can we learn 
PSF chromaticity from data directly? 

• How do zeropoint uncertainties or 
emission lines in SEDs affect machine 
learning corrections? 

• How do chromatic PSFs combined with 
galaxies with color gradients affect cosmic 
shear?  (See Sowmya Kamath’s poster) 

• How can we study realistic (non-
parametric) galaxies with color gradients?

Open chromatic questions



• SEDs used by Meyers&Burchat(2015) (from LSST 
CatSim), do not include emission lines. 

• Chromatic PSF biases depend on wavelength of 
emission line within filter, but photometry does not.  
Therefore, emission lines may complicate photometry-
based machine learning corrections. 

• Below: preliminary study adding emission lines to 
SEDs using prescription in Jouvel++11.

Emission lines

Machine learning corrections, including emission lines.  Left: relative PSF size 
residuals for SEDs with emission lines, when training catalog does not include 

emission lines.  Right: residual PSF size residual when both training and testing 
catalog SEDs contain emission lines.

• Machine learning performs similarly with or without emission 
lines, so long as testing and training catalogs are consistent. 

• When catalogs are mismatched, machine learning residuals 
are ~2 times larger.

Training catalog has no lines
Testing catalog has lines

Training catalog has lines
Testing catalog has lines



• Chromatic bias corrections derived from photometry 
may be sensitive to systematic uncertainties in 
zeropoints. 

• To simulate zeropoint uncertainty, we randomly 
perturb magnitudes in the machine learning testing 
catalog, but not the training catalog.

Zeropoint systematics

PSF size residuals.  In each panel normally distributed zeropoint offsets with 
standard deviation 0.02 mag are applied to each filter.

• Zeropoint uncertainty of 0.02 mag in each band 
increased PSF size residuals by factor of ~2 in worst 
case, warranting further study.



How to study galaxies with 
realistic color gradients?

Goal: determine f(~x,�) Ii(~x) Ti(�) ⇧(~x,�)

Make problem tractable by modeling galaxy as sum over products of  
(asserted) SEDs and achromatic profiles:
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SED spatial component

Fourier transforming makes the problem linear:
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• Existing studies of chromatic PSF effects on galaxies 
with color gradients assume simple bulge+disk models. 

• To investigate realistic color gradients, Semboloni++13 
suggested the using multiband HST imaging as input:
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Solving the system

⇠i(~xl � ~xm) = ⇠i(�~x) = h⌘i(~xl)⌘i(~xm)i
… and power spectrum:
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This is an independent least squares problem for each 
Fourier mode ~k

with solution (omitting matrix subscripts)
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where weight matrix W is
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which gives variance of each Fourier mode:

Assume input images have stationary noise correlation function…



Simulated example
We can now compute what the galaxy would look like under a different 

 (chromatic) PSF and through a different bandpass:
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Example projecting simulated HST images 
into the Euclid PSF and filter.

Top row: simulated noisy HST-like images in three bands of galaxy with 
color gradients.  Bottom left: noise-free image of same galaxy, but 

convolved with Euclid-like chromatic PSF and integrated over Euclid-like 
filter.  Bottom middle: output reconstructed using multi-band HST-like 

images on top row as input instead of true model.  Bottom right: residuals.



Noise propagation

Top left: predicted 2D noise correlation function.  Top right: measured 
correlation function.  Bottom left: 1D slice through correlation functions on 

linear scale.  Bottom right: 1D slice through correlation functions on log scale.

To investigate the algorithm’s ability to accurately propagate noise, we 
generated 1000 pairs of input images (in 2 simulated filters) of pure 

noise, and then measured the noise correlations in the output images.  
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The output noise power spectrum follows from standard  
linear propagation of errors:

Match is reasonable, except at origin (i.e., except 
overall variance) where prediction is ~10% too high.


